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Abstract

For heterogeneous nucleation of solidification, the conditions for initiation of solid grains on nucleant areas of defined size are

analysed. Calculations of the work of formation show that the solid formed on a nucleant area has both metastable- and unstable-

equilibrium configurations, which permit analysis of the competition between thermal nucleation (a stochastic process) and athermal

nucleation, a deterministic process in which the number of nucleation events depends on the undercooling, but not on time nor on

the mechanism (adsorption, wetting or nucleation) of the initial formation of a thin solid layer on the nucleant area. It is concluded

that for potent nucleants, initiating grains at small undercooling, athermal nucleation dominates. Thermal nucleation in advance of

athermal is negligible, but athermal nucleation can be delayed when solute restricts solid growth.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The term athermal nucleation was first used by Fisher

et al. [1] in discussing transformations (notably forma-

tion of martensite) which are observed not to proceed

under isothermal conditions, but only on cooling. It
contrasts with thermal nucleation in which thermal acti-

vation over a critical work of formation generates nuclei

of the new phase at a steady-state rate as the tempera-

ture is held constant. Fisher et al. considered the case

in which an equilibrium population of sub-critical em-

bryos at a given temperature could be retained by rapid

cooling to a lower temperature. In cases where some of

the retained population have sizes greater than the crit-
ical size at the lower temperature, there is a burst of

nucleation, even when the rate of thermal nucleation

at that temperature may be negligible. The essence of

athermal nucleation, as noted by Fisher et al. [1] is that
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sub-critical embryos are ‘‘automatically promoted to

nuclei’’ when, on cooling, the critical size decreases

and sweeps past their own size. The role of athermal

nucleation has been considered in cases as diverse as

the martensitic transformation in steel [2] and crystalli-

zation of polymers [3,4].
The rate of athermal homogeneous nucleation, ana-

lysed by Ziabicki [5], is proportional to the cooling rate,

and therefore likely to dominate at high cooling rate. Im

et al. [6] noted its importance for pulsed-laser melted

thin films of silicon cooled at P1010 K s�1, and pro-

posed a nucleation-mechanism diagram to identify the

regimes of quench rate and undercooling in which

thermal or athermal nucleation would be dominant.
For rapid quenches, however, the quasi-steady-state

approximation breaks down, and transient effects tend

to reduce the number of nuclei [7]. Shneidman [8] has

analysed the competition between such transient effects

and true athermal nucleation which increases the num-

ber of nuclei when there is no further evolution of the

embryo size distribution. He refined the nucleation-

mechanism map of Im et al. and noted that athermal
ll rights reserved.
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Fig. 1. Examples (shaded in (a) and (b)) of circular nucleant areas of

the kind considered in this work: (a) a surface patch, (b) the active face

of a nucleant particle. The growth of solid from such a nucleant area

(c) involves an increase in the curvature of the liquid/solid interface

enabled by an increase in undercooling. The curvature is maximum

when the liquid/solid interface is hemispherical and there is free growth

beyond that point. The onset of free growth as the undercooling is

increased constitutes athermal heterogeneous nucleation of

solidification.
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homogeneous nucleation is significant only for the com-

bination of extremely high cooling rate and large

undercooling.

In solidification, the nucleation of the crystalline

phase is, however, almost always heterogeneous. In this

case, an athermal contribution to the nucleation rate can
be significant over a wide range of conditions. For

example, in the freezing of a cast iron, Oldfield [9] found

that the number of grains per unit volume n was inde-

pendent of holding time at a given undercooling, but

proportional to the square of the undercooling DT. An

athermal nucleation law of this type is easy to imple-

ment in numerical modelling of solidification and is

widely used. As proposed by Thévoz et al. [10], the
nucleation rate dn/dDT as a function of DT is commonly

taken to have a Gaussian form; this has been used in

probabilistic modelling of realistic grain structures [11].

The form of dn/dDT is not intrinsic to the liquid, but

dependent on thermal history. In particular, as reviewed

by Turnbull [12], the extent to which a melt can be

undercooled may increase strongly with the degree to

which it was superheated above its liquidus temperature
TL. This can be explained as an effect of the survival of

embryos of the crystalline phase above TL in cavities

(conical or cylindrical, in a mould wall or other sub-

strate) [12]. If the superheat is greater, fewer embryos

survive and the survivors are in cavities with a smaller

mouth; the DT at which they become active nuclei on

cooling is inversely proportional to the mouth radius

[12]. (Similar analyses have been applied for the nucle-
ation of gas bubbles in supersaturated liquids. Pre-exist-

ing bubbles in cavities are active nuclei if the cavity

mouth exceeds a critical radius [13].)

Turnbull [14] showed that dispersions of mercury

droplets could be used to measure the rate of homoge-

neous nucleation under isothermal conditions, but he

found that the large DT required was not always obtain-

able. In some dispersions (presumed to be contaminated
with mercury oxide) the droplet undercoolings before

solidification were only 2–4 K [15]. For these disper-

sions, the fraction of droplets solidified was dependent

on DT but not on time. Turnbull attributed this to ather-

mal nucleation at surface patches acting as potent cata-

lysts. He noted that a embryo of the crystalline phase

formed on such a patch could become an active trans-

formation nucleus only when, on cooling, the critical
nucleation radius r� becomes less than the radius of

the patch. On this basis, he was able to derive the size

distribution of patches from the distribution of DT val-

ues at which the droplets solidified.

Similar athermal heterogeneous nucleation occurs in

the solidification of inoculated aluminium alloys [16].

Inoculation with an Al–Ti–B master alloy contributes

particles of TiB2 to the melt, and nucleation on these
is dominant. The particles are hexagonal prisms and

nucleation of solid aluminium is on their flat {0001}
faces [17]. Measured undercoolings are consistent with

grain initiation occurring when r� falls below the radius

rN of the {0001} faces (hexagonal, but approximated as

circles) and a pre-existing thin layer of solid aluminium

on the {0001} faces then grows outwards. This appear-

ance of a transformation nucleus has been termed the
onset of free growth [16]. By measuring the distribution

of rN, it is possible to model the sequence of grain initi-

ation events on cooling and to make quantitatively cor-

rect predictions of final grain size as a function of refiner

addition level, alloy solute content and cooling rate [16].

The success of this free-growth model has prompted

studies of how the particle size distributions in inocu-

lants might be optimized [18].
In this paper we analyse further the heterogeneous

nucleation of solidification on nucleant substrates of a

defined size. The standard approach to finite-size effects,

taken by Fletcher [19–21], considers nucleant particles of

various shapes, but analyses only the rate of thermal

nucleation under isothermal conditions. We extend this

work by analysing athermal nucleation. For simplicity

we consider nucleant areas that are plane circles of ra-
dius rN, the analysis for more complicated shapes mostly

differing only by geometrical factors. Plane circular

areas of nucleant can equally represent the surface

patches considered by Turnbull [15] (Fig. 1(a)), or the

active faces of nucleant particles (Fig. 1(b)), for example

the {0001} faces of TiB2 inoculant particles used to



Fig. 2. (a) A classical spherical-cap heterogeneous embryo of solid,

with contact angle h determined by the balance of interfacial energies;

(b) the ‘‘wetting’’ of the nucleant area by the solid which occurs when

cLS + cSN < cLN; (c) an example of a critical heterogeneous nucleus

illustrating that for a potent nucleant (small h), the critical radius for

nucleation r* can exceed the radius rN of the nucleant area.
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grain-refine aluminium. Athermal nucleation on such

areas is illustrated in Fig. 1(c). At a given undercooling,

solid may be formed on the substrate, but the lateral

spread of the solid is limited by the nucleant area. The

solid takes the form of a spherical cap, and the extent

of its growth can be represented by the height h. As h in-
creases, the radius of curvature rLS of the liquid/solid

interface decreases. Such growth stops when rLS has de-

creased to equal r�, the critical nucleation radius for the

ambient undercooling DT. For small DT, it is readily de-

rived [22] that

r� ¼ 2cLS
DSVDT

; ð1Þ

where cLS is the free energy per unit area of the liquid/

solid interface and DSV is the entropy of fusion per unit

volume. The solid can be described as dormant; it is not

yet a nucleus for solidification of the entire liquid. For
such dormant solid, it is expected that rLS = r�. If the

undercooling is increased, r� decreases, permitting fur-

ther growth. When r� has decreased to equal rN the solid

has the form of a hemisphere (h = rN) and rLS is at a

minimum. At this point the solid is no longer dormant,

since further growth causes a favourable increase in rLS
and free growth permits solidification of the entire li-

quid. The critical undercooling DTfg for the onset of free
growth is obtained from Eq. (1):

DT fg ¼
2cLS
DSVrN

: ð2Þ

By calculating the work of formation of solid on

defined circular areas at undercoolings less than and

greater than DTfg, we examine the nature of athermal

nucleation and the transition between thermal and

athermal nucleation (i.e., between stochastic and deter-

ministic behaviour). In particular, we test the assump-

tion that effective nucleation of solidification is at

DTfg, rather than occurring earlier on cooling because
of thermal fluctuation, or later because kinetic limita-

tions force rLS to deviate from r�. First, however, we

consider the different possibilities for the initial forma-

tion of solid.
2. Initial formation of solid

Heterogeneous nucleation of solidification on a sub-

strate is conventionally considered in terms of the classi-

cal model with a solid embryo in the form of a spherical

cap (Fig. 2(a)) making a contact angle h with the sub-

strate. Defining free energies cSN for the solid/nucleant

interface and cLN for the liquid/nucleant interface, h is

given by

cLN ¼ cSN þ cLS cos h; ð3Þ
where it is important to note that h is defined only when

cLS P jcLN � cSNj. The radius of curvature of the liquid/
solid interface for a critical nucleus in the form of a

spherical cap is identical to that for the spherical nucleus

in homogeneous nucleation. The work of formation of

the spherical-cap nucleus W �
hetero is, however, reduced

compared to that for the spherical nucleus in the homo-

geneous case W*, in proportion with the reduced solid
volume [22]:

W �
hetero ¼ W �f ðhÞ;
where f ðhÞ ¼ 1

4
ð2� 3 cos hþ cos3hÞ:

ð4Þ

The effects of the line tension around the perimeter of a

spherical-cap embryo have been analysed for condensa-

tion from vapour [23,24], but have not generally been

considered for solidification of melts. In any case, line-

tension effects are significant only for small r�, and are

negligible at the small undercoolings of interest in the
present work.

The spherical-cap model is expected to have difficul-

ties in the case of most interest, that of potent nucleation

when h is small. When h 6 10�, the nucleus would be less

than one atomic monolayer thick [25], and the spherical-

cap geometry is a bad description. It is then better to

model embryos as a monolayer discs [26]. Among the

studies indicating difficulties with the analysis of nucle-
ation at low h are those on the undercoolings required

for onset of solidification in entrained liquid droplets.

The spherical-cap nucleation model provides a reason-

able fit to observed kinetics when h P 40� and corre-

spondingly the undercooling to achieve heterogeneous

nucleation is large (DT > 50 K) [27,28]. On the other

hand, for smaller h and smaller DT, the classical model

is unable to fit the observed kinetics with reasonable
parameters [29,30]. Coudurier et al. [31] suggested that

heterogeneous nucleation might be treated as adsorption

of a solid-like layer on the substrate, and this concept



0 0.5 1 1.5 2

C
on

ta
ct

 A
ng

le
, θ

∆   / ∆
fg

T     T

0

π/2
(i) (iii)

(ii)

nucleation 
not possible 

no barrier to 
free growth

Fig. 3. Regimes of nucleation behaviour as a function of reduced

undercooling (DT/DTfg) and contact angle h. In (i), the nucleant area is

too small to permit a spherical-cap nucleus to form. In (ii), the regime

of most interest in the present work, a nucleus can form but its growth

stops when it has spread over the nucleant area and thickened such

that the liquid/solid interface reaches the critical radius of curvature r*.

The case of solid formed by adsorption or wetting can be represented

by h = 0. In (iii), rN > r*, there is no barrier to free growth, and the

rate-limiting step for effective nucleation is the initial formation of

solid on the substrate.
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has been considered in detail to interpret results such as

those on the entrained droplets [32,33]. In the model

usually considered, there is a critical undercooling be-

yond which it is thermodynamically favourable for there

to be atom-by-atom adsorption forming a solid layer on

the substrate.
The formation of an adsorbed solid-like monolayer at

a critical undercooling is distinct from stabilization of an

identifiable solid layer by ‘‘wetting’’ of the substrate. In

terms of interfacial energies, we can distinguish two

cases:

Case I cLS + cSN < cLN
Case II cLS + cSN > cLN

In case I (Fig. 2(b)), there is no solution to Eq. (3), and it

is thermodynamically favourable for the nucleant to be

wetted by the solid at all temperatures below the liqui-

dus temperature TL, and a layer of solid is stabilized

even above TL; there is no critical undercooling for the

appearance of the solid layer. In case II, an undercool-

ing is required for nucleation of the solid. The nucleant

is not wetted by the solid, and formation of a thin solid
layer covering the nucleant would be energetically less

favourable than the formation of spherical-cap embryos

of solid (Fig. 2(a)).

Conventional analyses emphasise case II and classical

spherical-cap nuclei. Case I has been largely overlooked

because it appears to suggest that there is no nucleation

barrier to solidification, even though, as noted in Section

1, a wetting layer of solid may be dormant with a free-
growth barrier to its becoming a transformation nu-

cleus. However, case I was considered in early work

on the effect of thermal history on undercooling of liq-

uids; Richards [34] suggested that a crystalline adsorbate

might exist on substrates. This idea was pursued in the

particular case of TiB2 inoculant particles in aluminium,

where the hypernucleation theory considered the condi-

tions for forming a quasi-solid nucleant layer on the sur-
face of the particles above the liquidus temperature

[35,36]. There is indeed some microscopical evidence

for a layer on these particles [17]. Transmission electron

microscopy has recently been used [37] to show that

there can be ordering in liquids at substrate surfaces,

even above TL.

For the effective nucleation temperature to be given

by Eq. (2) according to the model depicted in Fig. 1(c),
there must be initial formation of solid on the nucleant

substrate and either of the cases identified above can ap-

ply. In case I the solid exists as a thin layer even above

TL and there is no nucleation barrier for formation of

this initial solid. It is likely to form even when the cool-

ing rate is very high. In case II, the solid must be nucle-

ated on the substrate and this occurs beyond a critical

undercooling; accepting that there are geometrical prob-
lems for small h, the spherical-cap model is taken as the

general description of this case. Fig. 2(c) shows schemat-
ically a critical spherical-cap nucleus on a substrate with

radius rN. The radius of the nucleus base is r� sinh,
where r� is the critical radius of curvature of the li-

quid/solid interface. Provided r� sinh < rN, as shown, a

nucleus of the expected shape can be formed. The prob-

ability of nucleus formation is reduced at higher cooling
rates. As noted in Section 1, growth of the solid outward

from the nucleant area encounters a barrier if rN < r�.

This barrier disappears if the undercooling exceeds the

free-growth undercooling DTfg (Eq. (2)).

Fig. 3 shows the regimes of nucleation behaviour as a

function of reduced undercooling (DT/DTfg, the value of

DTfg being set by the rN of the substrate) and contact an-

gle h. In regime (i), the nucleant area is too small to per-
mit a spherical-cap nucleus to form on it. In regime (ii),

a spherical-cap nucleus can form but its growth stops

when it has spread over the nucleant area and thickened

such that the radius of curvature of the liquid/solid

interface has decreased to r�. The borderline between re-

gimes (i) and (ii) is given by

DT
DT fg

¼ sin h: ð5Þ

In regime (iii) rN > r� and there is no barrier to free

growth; in this case, the rate-limiting step for effective

nucleation (i.e., for the substrate to act as a transforma-

tion nucleus for solidification of the liquid) is the initial

formation of solid on the substrate.
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In regime (ii), with low h it is easy to nucleate solid on

the substrate. Case I in which the interfacial energies en-

sure that there is a solid layer even above TL, can be rep-

resented on Fig. 3 by h = 0. In either case, the dormant

solid does not lead to transformation of the liquid until

the undercooling is increased into regime (iii). The kinet-
ics of effective nucleation depend on the free-growth

barrier and the cooling from regime (ii) to regime (iii);

they do not depend on the mechanism (adsorption, wet-

ting, or spherical-cap nucleation) of formation of the

initial solid.
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3. Analysis of nucleation

3.1. Work of formation of the solid cap

We consider the growth of a spherical cap of solid

covering a nucleant area of radius rN (Fig. 1(c)). The

balance of interfacial energies underlying Eq. (3) does

not apply and (in contrast to earlier analyses [19–21]),

there is no defined contact angle. Another consequence
of complete coverage of the nucleant area is that line

tension plays no rôle. For the cap, the radius of curva-

ture of the liquid/solid interface rLS is related to the

height of the cap h by

rLS ¼
h
2
þ r2N
2h

: ð6Þ

The volume of the cap, Vcap is given by

V cap ¼ p rLSh
2 � h3

3

� �
¼ p

r2Nh
2

þ h3

6

� �
ð7Þ

and the area of the liquid/solid interface ALS by

ALS ¼ 2prLSh ¼ p h2 þ r2N
� �

: ð8Þ

The work required to form a cap of solid (Wcap) has

contributions from interfacial energies and from the free

energy change associated with the solidification of the

volume Vcap. Consistent with there being pre-existing

solid, the reference point for energy (Wcap = 0) is taken
to be that of an infinitesimally thin layer of solid coating

the entire nucleant area. The only relevant interfacial en-

ergy is then ALScLS. Consistent with the derivation of

Eq. (1), the free energy of fusion per unit volume is ta-

ken to be DSVDT, an excellent approximation for small

DT. The work of cap formation,

W cap ¼ cLS ALS � pr2N
� �

� V capDSVDT ; ð9Þ

by substituting from Eqs. (7) and (8), can be expressed

as

W cap ¼ cLSph
2 � DSVDT

ph3

6
þ pr2Nh

2

� �
: ð10Þ

The universal form of Wcap is best presented in terms

of dimensionless quantities. In doing so, a given shape

of solid cap should correspond to a given dimensionless
undercooling. The dimensionless cap height is taken to

be h/rN. The dimensionless undercooling is obtained

by scaling with respect to the free-growth undercooling

(Eq. (2)); thus athermal nucleation occurs when the

dimensionless undercooling DT/DTfg = 1. A dimension-

less work of formation can be obtained by normalizing
with respect to W �

DT fg
, the critical work for homogeneous

nucleation of a sphere at the free-growth undercooling

DTfg:

W �
DT fg

¼ 16pc3LS
3DS2

VDT
2
fg

¼ 4pcLSr
2
N

3
: ð11Þ

Rearranging Eq. (10) in terms of these dimensionless

quantities gives

W cap

W �
DT fg

¼ � 1

4

DT
DT fg

� �
h
rN

� �3

þ 3

4

h
rN

� �2

� 3

4

DT
DT fg

h
rN

:

ð12Þ
The form of Eq. (12) is plotted in Fig. 4 for five values of
dimensionless undercooling. For DT < DTfg, the work of

cap formation passes through a minimum followed by a

maximum as h/rN is increased. These extrema occur at

h
rN

¼ DT fg

DT
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT fg

DT

� �2

� 1

s0
@

1
A ð13Þ

and represent conditions of equilibrium across the li-

quid/solid interface. At these points the radius of curva-

ture of that interface has the critical value r� given by

Eq. (1), expressed in dimensionless terms as

r�

rN
¼ DT fg

DT
: ð14Þ
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Geometrically (Fig. 5), the solid caps on the nucleant

area are obtained by cutting a sphere of equilibrium cur-

vature with a plane such that the circle of intersection

has a radius equal to rN. The cap of smaller volume

(a) is in metastable equilibrium; the larger cap (b) is in

unstable equilibrium.
The work of formation and rLS are presented in Fig. 6

for the case of DT/DTfg = 0.5. Between the two equilib-

rium conditions shown in Fig. 5, rLS < r�. The work of

cap formation in this figure is normalized with respect

to W �
DT the critical work for homogeneous nucleation

at the actual undercooling:

W �
DT ¼ 16pc3LS

3DS2
VDT

2
: ð15Þ

This normalization would not be useful in Fig. 4, since

W �
DT would vary from curve to curve, but it is useful

for the given undercooling in Fig. 6 in indicating how
the work of cap formation compares with the critical

work for homogeneous nucleation.

Fig. 4 shows that for DT/DTfg < 1, there is an energy

barrier for nucleation. As the normalization is with re-
Fig. 5. The (a) metastable- and (b) unstable-equilibrium configura-

tions of the dormant-solid cap for DT < DTfg. The radius of curvature

of the liquid/solid interface in each case has the critical value r* and the

two configurations are geometrically related.

value at the extrema on the work curve. The critical work for free

growth (DWcap) is the energy difference between the extrema and is less

than the critical work for homogeneous nucleation.
spect to the fixed quantityW �
DT fg

, the energies on the differ-

ent curves can be compared directly. As the dimensionless

undercooling is increased, the two extrema converge and

the barrier decreases. At DT/DTfg = 1, the work of forma-

tion as a function of cap height no longer exhibits

extrema; there is just the stationary point at

h ¼ rLS ¼ r� ¼ 2cLS
DSVDT

ð16Þ

when the solid takes the form of a hemisphere and there

is no barrier to free growth (Fig. 4). Cooling through the

condition DT/DTfg = 1 gives athermal nucleation. At
DT/DTfg < 1, there could be thermal activation over

the nucleation barrier, and we now assess the likelihood

of this pre-empting athermal nucleation on cooling.
3.2. The competition between thermal and athermal

nucleation

The initial, infinitesimally thin, coating of solid on the
nucleant area grows naturally to the metastable and dor-

mant condition shown in Fig. 5(a). From that condition,

the critical work of thermal nucleation DWcap is the dif-

ference in energy between the two extrema, which can be

expressed in dimensionless terms as

DW cap

W �
DT fg

¼ DT fg

DT

� �2

� 1

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DT

DT fg

� �2
s

ð17Þ
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or

DW cap

W �
DT

¼ 1� DT
DT fg

� �2
" #3=2

: ð18Þ

The ratio DW cap=W �
DT tends to 1 (or 0) as DT/DTfg tends

to 0 (or 1). For the case shown in Fig. 6 (DT/DTfg = 0.5),

DW cap=W �
DT ¼ 0:65, showing that, as expected, the bar-

rier is less than for homogeneous nucleation. The critical

work for thermal nucleation (Eq. (17)) is plotted (on a

logarithmic scale, given its range of values) as a function

of the dimensionless undercooling in Fig. 7, and shows a

sharp transition. For small DT/DTfg, the dimensionless

work DW cap=W �
DT fg

� 1, while for large DT/DTfg, the

work DW cap=W �
DT fg

� 1. The likelihood of thermal acti-

vation over this energy barrier depends on the ratio of
the barrier height to the thermal energy kBT (where kB
is Boltzmann�s constant and T is the temperature). The

critical value of this ratio has been evaluated for differ-

ent cases. For homogeneous nucleation of solidification,

for example, the detectable onset is when W* = (60 ±

2)kBT [38]. In the present case, however, we are con-

cerned with the probability of surmounting the energy

barrier on a given nucleant area rather than anywhere
in the volume of liquid. Following the arguments of

Feder et al. [39] for the random nature of atomic ex-

change with embryos/nuclei of near-critical size, thermal

activation and athermal growth become indistinguish-

able when the energy barrier DWcap 6 kBT. Taking

DW �
DT fg

from Eq. (11), the condition for significant ther-

mal activation of nucleation, before the free-growth cri-

terion is met, is

DW cap

W �
DT fg

6
3kBT
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2
N

: ð19Þ
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Fig. 7. The dimensionless critical work for free growth ðDW cap=W �
DT fg

Þ
as a function of dimensionless undercooling (DT/DTfg) (Eq. (17)). The

dashed lines indicate values of the critical work below which thermal

activation of nucleation is likely to precede athermal nucleation on

cooling. These values depend on the radius of the nucleant area (Eq.

(19), with substitution for TM/cLS typical for metals).
The condition depends on the size of the nucleant

area and the ratio T/cLS. As the undercoolings of inter-

est are small, we take T to be the melting temperature

TM. For metallic elements cLS and TM are roughly pro-

portional (a compilation of data can be found, for exam-

ple, in Ref. [38]), with cLS/TM � 1.2 · 10�4 J m�2 K�1.
Substituting this ratio into Eq. (19), values of DW cap=
DW �

DT fg
are obtained for selected values of rN. When

the main curve in Fig. 7 falls below a given contour,

thermal nucleation is likely to be significant. It can be

seen that thermal nucleation is significant only at large

dimensionless undercoolings when DT/DTfg approaches

one. It is more significant for smaller nucleant areas,

but even for the smallest area considered, with
rN = 1 nm, thermal nucleation would be significant only

for DT/DTfg > 0.95. In the real case of inoculation of

aluminium using an Al–Ti–B master alloy, the TiB2 par-

ticles on which grain nucleation occurs have {0001}

faces with rN typically not smaller than 1.5 lm. In such

a case, thermal nucleation is significant only for

(1 � DT/DTfg) < 5 · 10�8. Thus the assumption made

in earlier modelling work [16] that the condition for
grain initiation would be that given by Eq. (2) is fully

justified. For micrometre-sized nucleant areas, thermal

nucleation is negligible in advance of the free-growth

condition (Eq. (2)) being met on cooling. Thus the effec-

tive nucleation of solid is completely deterministic and

governed by temperature change; it is not stochastic.

3.3. Kinetic effects on athermal nucleation

In considering athermal nucleation at the onset of

free growth on cooling, we have assumed that the dor-

mant solid is in its metastable equilibrium configuration

in which rLS = r�. As r� decreases on cooling, this re-

quires the cap height h to increase. From Eq. (13), the

increase of h is given by

dh=rN
dðDT Þ=DT fg

¼ DT fg

DT

� �2 DT fg

DT
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDT fg=DT Þ2 � 1

q � 1

0
B@

1
CA
ð20Þ

and this has the form shown in Fig. 8. Assuming that the

liquid is cooled at a constant rate _T , the rate of increase
of h with respect to time t is

dh
dt

¼ _T
dh
dDT

¼ _T rN
DT fg

DT 2

DT fg

DT
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDT fg=DT Þ2 � 1

q � 1

0
B@

1
CA: ð21Þ

Both this rate and dh/dDT (Fig. 8) diverge to infinity as
DT approaches DTfg. It is thus impossible for the dor-

mant cap always to maintain its metastable configura-

tion. The rate of increase in cap height may be limited
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Fig. 8. The rate of change of metastable-equilibrium cap height with

undercooling plotted against undercooling. All parameters are nor-

malized to be dimensionless. Given kinetic limits on the velocity of the

liquid/solid interface, the divergence of the rate of change of cap height

as DT/DTfg approaches one implies that the metastable-equilibrium

configuration cannot be maintained, inhibiting athermal nucleation.
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by several factors: the kinetics of interfacial atomic rear-

rangement, transport of heat and transport of solute. In

typical alloy solidification at least, the most important

of these is the transport of solute, the difficulty of which

can be quantified by the solutal undercooling DTsol. If

DTsol is a significant fraction of the total undercooling,

the undercooling available to sustain curvature of the li-
quid/solid interface is reduced and the effective value of

r� is increased, inhibiting the attainment of the free-

growth condition. We arbitrarily take DTsol to be signif-

icant if it exceeds 10% of the total undercooling. As dh/dt

tends to infinity as DT/DTfg tends to 1, DTsol always be-

comes significant in this way. We examine whether it is

significant at DT/DTfg = 0.9; if so, athermal nucleation is

likely to be detectably more difficult than expected from
the earlier analysis.

When the liquid/solid interface approaches a hemi-

spherical shape, the growth of the solid can be approx-

imated by the invariant-size approximation for solute

diffusion around a growing sphere of radius h
dh
dt

¼ DsolDT sol

rQ
; ð22Þ

where Dsol is the diffusivity of the solute in the liquid

[16]. For a binary alloy the growth-restriction parameter

Q is given by [16]

Q ¼ mðk � 1ÞC0; ð23Þ
where m is the liquidus slope, k is the equilibrium parti-

tion coefficient, and C0 is the solute content in the liquid.

Substituting DT/DTfg = 0.9 into Eq. (21) and rearrang-

ing yields

dh
dt

¼ 1:6
_T

DT fg

rN: ð24Þ
Substituting for DTfg from Eq. (2) and equating to

Eq. (22) yields

DT sol ¼
0:8 _T r3NQDSV

DsolcLS
: ð25Þ

Comparing this to the total undercooling at the free-

growth condition yields

DT sol

DT fg

¼ 0:2 _T r4NQDS
2
V

Dsolc2LS
: ð26Þ

Setting DTsol/DTfg P 0.1 as the condition for kinetic ef-

fects to be significant, we derive an expression for the

nucleant-area radius sufficient to cause significant devia-
tion from the metastable configuration of dormant solid

and therefore inhibition to athermal nucleation:

rN P
Dsolc2LS
2 _TQDS2

V

" #1=4

: ð27Þ

To evaluate typical magnitudes we take the example

of aluminium alloys inoculated with Al–Ti–B master al-

loy. Even for commercial-purity aluminium, transport

of solute is the main inhibitor of solid growth [16,40].

Substituting Dsol = 2.52 · 10�9 m2 s�1, DSV = 1.112 ·
106 J K�1 m�3, and cLS = 158 mJ m�2 (values for alu-

minium alloys as used in [16]) into Eq. (27) gives

rN P
1:9� 10�6ffiffiffiffiffiffiffi

_TQ4
p : ð28Þ

Substituting typical values of Q (in K) and _T (in K s�1)

into this equation reveals that the critical rN (in m) is

close to the radius of the TiB2 inoculant particles present

in the melt. For a low solute level (Q = 2.2 K) typical of

an inoculated commercial-purity aluminium and a cool-

ing rate typical of DC ingots (3.5 K s�1), rN is 1.15 lm;

for the same cooling rate but Q = 20 K, rN = 0.65 lm.

As the smallest rN of TiB2 particles typically active in
nucleating grains [16] is 1.5 lm, some kinetic effects

are expected.
3.4. Non-planar nucleant areas

The calculations of the work of formation of the solid

cap are for the case of a planar nucleant area, but can

easily be modified for other cases. For example, the for-
mation of solid on a concave nucleant area is followed

by growth. At DT = 0 the metastable equilibrium config-

uration of the liquid/solid interface is planar across the

mouth of the cavity, a condition for which h = 0 can

be defined. For 0 < DT < DTfg, the solid grows to the

same metastable equilibrium as already identified. The

description of the work of formation of the solid on a

concave nucleant area then simply requires that the
curves in Figs. 4 and 6 be extended to negative values

of h. As the relative energies of the extrema are not af-
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fected, the work of formation DWcap is unaffected. This

case of a concave area can be applied, as originally ana-

lysed by Turnbull [12], to solid in a cavity in a substrate,

if the outer surface of the substrate is not wetted by the

solid.

The case of a convex nucleant area is dealt with sim-
ply by starting the curves in Figs 4 and 6 at the value of

h corresponding to the degree of convexity; the work is

not defined for smaller values of h. The work of forma-

tion of the solid cap is unaffected provided the minimum

value of h is less than that of the energy minimum;

otherwise the work is reduced. The convexity of the

area, however, inhibits the formation on it (by classical

heterogeneous nucleation, adsorption or wetting) of the
initial layer of solid.
4. Conclusions

Athermal nucleation occurs when sub-critical em-

bryos become active nuclei on cooling because the criti-

cal size decreases and sweeps past their own size. It is
commonly considered for solid-state transformations,

particularly for the nucleation of martensite. For solidi-

fication, however, previous studies have been limited

and focused on homogeneous nucleation, for which

athermal effects are significant only at extremes of high

cooling rate and large undercooling. The present work

shows that, in contrast, for the more usual case of heter-

ogeneous nucleation of solidification, athermal
nucleation is likely to be dominant. This facilitates solid-

ification modelling by providing a nucleation law in

which the number of grains is a function of undercool-

ing, but not of time.

The initial formation of solid on nucleant areas may

be by adsorption, wetting, or classical heterogeneous

nucleation of a spherical cap. Particularly for potent

nucleants, the solid is formed at undercoolings where
the critical nucleation radius r� is significantly greater

than rN the radius of the nucleant area. The solid is

therefore dormant (unable to lead to overall solidifica-

tion) until the critical undercooling is reached at which

r� = rN. The undercooling DTfg for effective nucleation

of a solid grain is then given by the conditions for

free-growth set by rN; it is unaffected by the mechanism

of the initial solid formation.
The energetics of formation of dormant solid on

nucleant areas have been analysed. The analysis pre-

sented for planar areas can readily be adapted for con-

cave and convex areas. The energy of formation of

dormant solid as a function of the thickness (height)

of the solid on the nucleant area shows a minimum,

which marks the extent of natural growth of the solid,

and a maximum which is the barrier to thermal nucle-
ation. This barrier disappears as the undercooling ap-

proaches DTfg. For nucleant areas of reasonable size
(of the order of rN = 1 lm), it is found that the probabil-

ity of thermal nucleation preceding athermal on cooling

is negligible. On the other hand, athermal nucleation

may be delayed to larger undercooling by kinetic effects

arising from solute restriction of solid growth.

Overall the calculations justify the use of the free-
growth criterion in modelling conventional solidification

processing, such as inoculation to achieve grain refine-

ment of aluminium alloys.
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